vjindal.met's picture
Dr. Vikas Jindal
Associate Professor
Department of Metallurgical Engineering
Area of Interest: 
Computational Thermodynamics, Ab initio modeling of thermodynamics, Alloy Design, Advanced Materials

[1]      J. Du, V. Jindal, A.P. Sanders, K.S. Ravi Chandran, CALPHAD-guided Alloy Design and Processing for Improved Strength and Toughness in Titanium Boride (TiB) Ceramic Containing a Ductile Phase, Acta Mater. (2019). doi:10.1016/j.actamat.2019.03.040.
[2]      V. Jindal, A. Sarda, A. Degnah, K.S. Ravi Chandran, Effect of iron & boron content on the Spark Plasma Sintering of Ti-B-Fe alloys, Adv. Powder Technol. 30 (2019) 423–427. doi:10.1016/j.apt.2018.11.021.
[3]      J. Akram, P.R. Kalvala, V. Jindal, M. Misra, Evaluating location specific strain rates, temperatures, and accumulated strains in friction welds through microstructure modeling, Def. Technol. 14 (2018) 83–92. doi:10.1016/j.dt.2017.11.002.
[4]      J. Du, A.P. Sanders, V. Jindal, K.S.R. Chandran, Rapid in situ formation and densification of titanium boride (TiB) nano-ceramic via transient liquid phase in electric field activated sintering, Scr. Mater. 123 (2016) 95–99. doi:10.1016/j.scriptamat.2016.06.010.
[5]      V. Jindal, P.K.P. Rupa, G.K. Mandal, V.C. Srivastava, Effect of High-Temperature Severe Plastic Deformation on Microstructure and Mechanical Properties of IF Steel, J. Mater. Eng. Perform. 23 (2014) 1954–1958. doi:10.1007/s11665-014-0977-9.
[6]      V. Jindal, B.N. Sarma, S. Lele, B. Nageswara Sarma, S. Lele, An improved CVM entropy functional for binary fcc alloys, Comput. Mater. Sci. 84 (2014) 129–133. doi:10.1016/j.commatsci.2013.11.062.
[7]      V. Jindal, B.N. Sarma, S. Lele, An improvement of cluster variation method entropy functional for bcc alloys, Calphad. 43 (2013) 48–51. doi:10.1016/j.calphad.2013.10.004.
[8]      V. Jindal, B.N. Sarma, S. Lele, A thermodynamic assessment of the Cr–Mo system using CE-CVM, Calphad. 43 (2013) 80–85. doi:10.1016/j.calphad.2013.10.003.
[9]      V.C. Srivastava, T. Singh, S. Ghosh Chowdhury, V. Jindal, S.G. Chowdhury, Microstructural Characteristics of Accumulative Roll-Bonded Ni-Al-Based Metal-Intermetallic Laminate Composite, J. Mater. Eng. Perform. 21 (2012) 1912–1918. doi:10.1007/s11665-011-0114-y.
[10]    V. Jindal, V.C. Srivastava, V. Uhlenwinkel, On the role of liquid phase stability and GFA parameters, J. Non. Cryst. Solids. 355 (2009) 1552–1555. doi:10.1016/j.jnoncrysol.2009.05.049.
[11]    V.C.C. Srivastava, V. Jindal, V. Uhlenwinkel, K. Bauckhage, Hot-deformation behaviour of spray-formed 2014 Al+SiCp metal matrix composites, Mater. Sci. Eng. a-Structural Mater. Prop. Microstruct. Process. 477 (2008) 86–95. doi:10.1016/j.msea.2007.06.086.
[12]    V. Jindal, V.C.C. Srivastava, Growth of intermetallic layer at roll bonded IF-steel/aluminum interface, J. Mater. Process. Technol. 195 (2008) 88–93. doi:10.1016/j.jmatprotec.2007.04.118.
[13]    V. Jindal, V.C. Srivastava, R.N. Ghosh, Development of IF steel–Al multilayer composite by repetitive roll bonding and annealing process, Mater. Sci. Technol. 24 (2008) 798–802. doi:10.1179/174328406X148688.
[14]    V. Rajinikanth, V. Jindal, V.G. Akkimardi, M. Ghosh, K. Venkateswarlu, Transmission electron microscopy studies on the effect of strain on Al and Al-1% Sc alloy, Scr. Mater. 57 (2007) 425–428. doi:10.1016/j.scriptamat.2007.04.038.
[15]    V. Jindal, P.K. De, K. Venkateswarlu, Effect of Al3SC precipitates on the work hardening behavior of aluminum-scandium alloys, Mater. Lett. 60 (2006) 3373–3375. doi:10.1016/j.matlet.2006.03.017.
[16]    V. Jindal, V.C. Srivastava, A. Das, R.N. Ghosh, Reactive diffusion in the roll bonded iron-aluminum system, Mater. Lett. 60 (2006) 1758–1761. doi:10.1016/j.matlet.2005.12.013.

Current Teaching Interests

  • Modeling And Simulation In Metallurgy (Undergraduate)

  • Heat Treatment (Undergraduate)

  • Computational Methods for Metallurgy (Postgraduate)